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Scientific Motivation: Environmental Health

Example domains

 Air pollution
o Wildfires
» Extreme heat

Common issue: continous treatments
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Standard causal data set-up

Observed data: A tuple of n-vectors, Oq, ..., Oy, where

O=(LA,Y)~P

o L measured baseline covariates
» A continuous exposure

» Y outcome of interest

Question: how much would Y have changed under different value of A?
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Causal inference with continuous A

» Let Y(a) denote “potential outcome”: value of Y had we set A = a.

» Typically seek counterfactual mean E(Y (a))

average effect on Y of setting A = a

o If A is continuous...

Can't observe all possible A: hard to estimate dose-response
nonparametrically

‘Setting all A = a’ often doesn't make sense

Instead, consider modifying observed treatment...
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Modified Treatment Policies

A user-specified function d( A, L; §) that maps the observed exposure A to
an post-intervention value Al (Haneuse and Rotnitzky 2013).

o Additive: d(A, L;0) = A+ 6
o Multiplicative: d(A, L; §) =9 - A —>

o Piecewise Additive:

o JA+6-L Aec A(L)
d(4,L;0) = {A otherwise
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Causal Effect of a Modified Treatment Policy

Counterfactual mean is now
Ep (Y(d(4,L;9))) = Ep(Y(A%))

and population intervention effect is E(Y (A%)) — E(Y)

 "Average Y caused by shifting each A; by d’

» Causal, nonparametric analogue of a linear regression coefficient
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Problem: want M TP effects in
spatial data..
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Example: Electric Vehicles

What is the impact of zero-emissions
vehicles (ZEV) on NO» air pollution in é
California?

% of ZEV, 2019
0

» Continuous treatment (proportion of
/EVS)

» No real-world intervention can “set
everyone's proportion of ZEVsto A = a’

» But we can consider MTP effects, like
E(Y(A+1))or E(Y(1.01 - A))
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Research Question

How to identify and estimate causal effects of MTPs in spatial data?

Must be...

» Policy-relevant (intervention on population)
 Flexibly estimable (no parametric nuisance models)

» Efficient (approach lowest possible variance)
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INnterference

Hudgens and Halloran (2008): interference occurs when potential outcome
of unit 2 depends on exposures of other units

Yi(as, a;) # Yi(ai, a)) if a; # a

« Common in spatial data

» Causal identification fails: SUTVA/consistency
violated

» Correlated data — challenging estimation
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INnterference

Hudgens and Halloran (2008): interference occurs when potential outcome
of unit 2 depends on exposures of other units

E(aia a’j) 7& Y;Z(a'ia CL;) if a; 7& CL;-

Network interference: Potential outcomes only
depend on neighbors in adjacency matrix F (van der

Laan 2014).
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The Induced MTP
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New Data Structure

1. Observed data: A tuple of n-
vectors, O1, ..., 0, where

0= (LA,Y) é\\/)@\

7. Network F: An adjacency matrix
of each unit's neighbors (known).
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Repairing identification under interference

Under interference, consider the following structural equation:
Y, = f(SA(Aj ] € FZ’),SL(L]' ] € Fz))

e §:'summary’ of neighbors’ exposures or exposure mapping
» For short, denote vector of s4(A; : j € F;) as s(A)
« Example:s(4); =) ..x A;

JEF;

Treating s(A) as exposure instead of A restores SUTVA (Aronow and
Samii 2017); just use Y (s(a)) instead of Y (a)'
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Theinduced MTP

What happens if we apply the MTP and then summarize?

d
A— At — A
Call the function s o d the induced MTP.

Population intervention effect of an induced MTP:
1 n
W,(P) = Ep|— Y Yi(s(d(A, L;))s) | — Ep|Y]|
=

» data-adaptive, only observe one network
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l[dentification
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Network analogues of classical assumptions (weaker)

A0 (SCM). Data are generated from a structural causal model:
L; = fL(E:Lz');Ai — fA(LfagAi);Yi — fY(AfaLfagYi) :

with error vectors independent of each other with identically distributed
entries and ;1L € provided ¢, 7 not neighbors in F¥

A1 (Summary positivity). If s(a), s(1) € supp(A?, L?) then
s(a?),s(l) € supp(4°, L*)

A2 (No unmeasured confounding). Y (A®) 1L A% | L
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Extra necessary conditions on d and s

A3 (Piecewise smooth invertibility). The MTP d has an differentiable inverse
on a countable partition of supp(A).

A4 (Summary coarea). s has Jacobian J s satisfying

\/det Js(a)Js(a)' >0

» From measure-theoretic calculus; allows use of A% in place of A
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[dentification Result (Section S2)

Statistical estimand factorizes in terms of A:
ZEP (Af,L¢) - (A5, AF L) - w(A, L))

with nuisance parameters m, r and weights w:

m(a®,l°) = Ey (Y | A} = a°, L] = 1°)

r(a®, a®? " I%) = p(a*’ | I°)
( y 7l ) p(as ‘ ls)
w(a, 1) = \/det J(sod1)(a)J(sod1)(a)T
| det Js(a)Js(a)T
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Advantages of M TP in network

» Population-level estimand; intervention always compatible with network

» Fewer positivity issues from enforcing static intervention on summaries
themselves

» Unknown parts of estimand only in terms of A® and L?
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-stimation
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Desiderata for estimators

» semiparametric efficiency

Best possible variance among the class of regular asymptotically
inear (RAL) estimators

o rate double-robustness

structure allows flexible regression or machine learning (converge
slower than Op(n_1/2), parametric rate) for nuisance estimation

Space-Time Causality Reading Group P Th CHAN

oooooooooooooooooooo



23

Efficient, Doubly-Robust, Nonparametric Estimation

Construct an efficient estimator solving estimating equation with efficient
influence function ¢

% > 6(0s1)
i—1

where 7} is a set of nuisance estimators whose product converge at
op(n~1/2) (ie. only need op(n~1*4), typical in statistical learning)

» One-step correction (Bickel et al. 1993; Pfanzagl and Wefelmeyer 1985)
(e.g. AIPW)

e TMLE (van der Laan and Rose 2011; van der Laan and Rubin 2006)
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Efficient, Doubly-Robust, Nonparametric Estimation

The efficient influence function of ¥, a special case of the EIF for the
counterfactual mean of a stochastic intervention (Ogburn et al. 2022), is

5(0) == > w(A,L); - 1(A1, L, )(Y; - m(A}, L))

+E(m(A]*, Li;0), L) [ L =1) — ¢,
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Efficient, Doubly-Robust, Nonparametric Estimation

Ogburn et al. (2022)'s CLT: If zﬂn s constructed to solve @ =~ 0 and
/m — 0, then, under mild regularity conditions,

\/C_n(iﬁn — ) — N(O, 02) ;

where K max IS the network’s maximum degree.

maX

The estimator 7,@,1 s asymptotically normal, but the rate depends on a factor

n/K?2 < C, < n(automatically contained within %)
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Estimation Framework

1. Fit estimators ™m and 7 of nuisance parameters m and 7 via cross-
fitting! and super (ensemble machine) learning (Davies and van der

Laan 2016; van der Laan et al. 2007).

2. Construct one-step or ‘network-TMLE" estimators (Zivich et al. 2022)
from an estimated EIF based on m and w - 7 (weighted density ratio)

3. Compute standard error and construct Wald-style confidence intervals
based on empirical variance of the estimated EIF?.

A
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-mpirical results
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Asymptotic properties of Network-TMLE

Cn-MSE
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Versus competing methods on semisynethic data
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o Simulate A and Y as linear models from 16 socioeconomic and land-

use ZIP-code level covariates from the ZEV-NO», California dataset.

» How poor would estimates be if only mistake were ignoring interference?

Method Learner % Bias Variance Coverage

Network-TMLE ~ Correct GLM 0117 1.56
Network-TMLE  Super Learner 1.03  1.56
ID-TMLE Correct GLM 2042 211
Linear Regression — 2062 212
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Data Analysis

Space-Time Causality Reading Group P Th CHAN

oooooooooooooooooooo



Fffect of electric vehicles on NQO» in California

Additive Shift: 1 unit Multiplicative Shift: 20%
GLM (No Interference) I @ I I L I
MTP (No Interference) I @ I I L I

Induced MTP (Sum) |—0—| |—0—|

-0.1 0.0 0.1 -0.1 0.0 0.1

Mean NO, reduction, 2013-2019 (ppb)

« GLM (ignores interference): ZEVs reduce NO, by 0.015 ppb, totaling ~2.5% of average change in NO,

« Induced MTP: ZEVs reduce NO, by 0.042 ppb, totaling ~/% of average change in NO,
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—urther Work
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Further work

Challenges remain:
« Difficult to estimate conditional density ratio nuisance r

May benefit from undersmoothing or ‘Riesz learning’

 |f summaries s unknown, can we learn them automatically?

» Same theory of the Longitudinal MTP (Diaz et al. 2021) should extend
when reduced; useful for time-varying setting
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Simulations powered by CausalTables |l

The Journal of Open Source Software

DOI: 10.21105/joss.07580

Software
= Review 4
= Repository 03
= Archive 7

Editor: Oskar Laverny 7

Reviewers:

CausalTables.jl: Simulating and storing data for
statistical causal inference in Julia

Salvador V. Balkus ©'Y and Nima S. Hejazi ©'

1 Department of Biostatistics, Harvard T.H. Chan School of Public Health § Corresponding author

Summary

Estimating the strength of causal relationships between treatment and response variables is
an important problem across many scientific disciplines. CausalTables.jl is a package that
supports causal inference in Julia by providing two important functionalities. First, it implements
the CausalTable, bundling tabular data with a type of directed acyclic graph (DAG) encoding
features’ causes. Users can intervene on treatments and identify causal-relevant variables like
confounders automatically. Second, the package's StructuralCausalModel interface simplifies
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Thank you! Questions?

NIEHS

Funded by NIEHS T32 ES00/142
and NSF DGE 2140743
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Appendix A: Variance estimation

FIF was given in the form = >-7 | ¢p(O;), but must be centered at the
means of units with the same nurber of neighbors N (|F;]):
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Appendix B: Cross-fitting in Dependent Data

Main idea: cross-fitting eliminates the "empirical process term’

Prny = Pndy, + P(@y — dny) + (P = P)(dy — &)
T 2 N

CLT Nuisance product Empirical process

» Empirical mean unbiased under cross-fitting, even in correlated units
» Var(¢; — ¢y,) = o(1/C,) by Bienayme's identity
Network assumes K2 /n < C,,

max

There are at most K2 correlated units

» Therefore, (P, — P)(#; — ¢y,) = 0p(1/Ch)
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Appendix C: DGP for simulation stuady

Draw 400 iterations, estimate effect of MTP based on

L; ~ Beta(3,2); Ly ~ Poisson(100); L3 ~ Gamma(2,4); Ly ~ Bernoulli(0.6)
myp = (1 + L4) : (— 92(I(L; > 0.3) + I(Ly > 90) + I(L3 > 5)) — (I(L1 > 0.5)+

I(Ly > 100) + (L3 > 10)) + 2(I(Ly > 0.7) + I(Ly > 110) + I(L3 > 15)))

A ~ Normal(my —5,1.0) and A® = {ZA}

jeF;
mag = —2I(A>-2)—1(A>1)+3[(A > 3);ma, =31(4s >0) +I(A; > 6) + [(A; > 12)
Y ~ TruncNormal(mpg - (1 + 0.2my4 +my4,) + 5,2.0),
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Appendix D: Effect of ZEV on NO»

Additive Shift Multiplicative Shift
g 0.10 0.10
= O
Qg2 0.05 0.05
—o p
© @ 0.00 0.00
O
Z o "0.05 -0.05
C o
TN -0.10 -0.10
>
0.5 1.0 15 2.0 0.1 0.2 0.3 0.4

Increase in Proportion of ZEVs Across CA (Percentage Point)

— Induced MTP (Sum) ~— MTP (No Interference)
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