

The causal effects of modified treatment policies under network interference

Salvador Balkus

sbalkus@g.harvard.edu

Harvard Biostatistics

Scott Delaney

sdelaney@mail.harvard.edu

Harvard Environmental Health

Nima Hejazi

nhejazi@hsph.harvard.edu

Harvard Biostatistics

September 3, 2025

Scientific Motivation: Environmental Health

Example domains

- Air pollution
- Wildfires
- Extreme heat

Common issue: *continuous treatments*

Standard causal data set-up

Observed data: A tuple of n -vectors, O_1, \dots, O_n , where

$$\mathbf{O} = (\mathbf{L}, \mathbf{A}, \mathbf{Y}) \sim \mathbf{P}$$

- \mathbf{L} : measured baseline covariates
- \mathbf{A} : continuous exposure
- \mathbf{Y} : outcome of interest

Question: how much would \mathbf{Y} have changed under different value of \mathbf{A} ?

Causal inference with continuous A

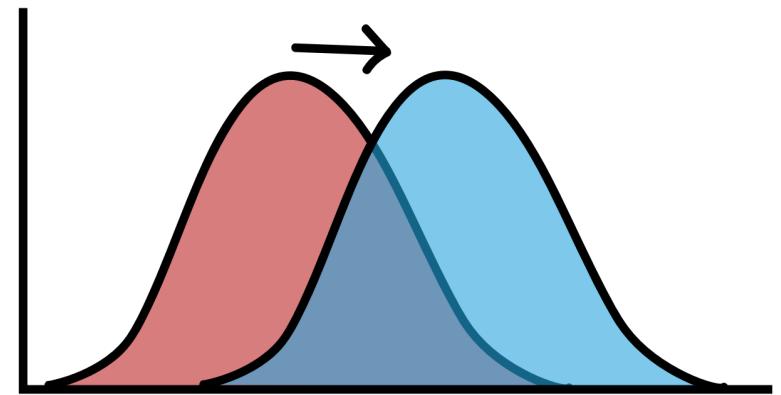
- Let $Y(a)$ denote “potential outcome”: value of Y had we set $A = a$.
- Typically seek counterfactual mean $E(Y(a))$
 - average effect on Y of setting $A = a$
- If A is continuous...
 - Can’t observe all possible A : hard to estimate dose-response nonparametrically
 - “Setting all $A = a$ ” often doesn’t make sense
 - Instead, consider *modifying* observed treatment...

Modified Treatment Policies

A user-specified function $d(A, L; \delta)$ that maps the observed exposure A to an post-intervention value A^d (Haneuse and Rotnitzky 2013).

- Additive: $d(A, L; \delta) = A + \delta$
- Multiplicative: $d(A, L; \delta) = \delta \cdot A$
- Piecewise Additive:

$$d(A, L; \delta) = \begin{cases} A + \delta \cdot L & A \in \mathcal{A}(L) \\ A & \text{otherwise} \end{cases}$$



Causal Effect of a Modified Treatment Policy

Counterfactual mean is now

$$\mathbb{E}_{\mathbf{P}}\left(Y(d(A, L; \delta))\right) = \mathbb{E}_{\mathbf{P}}\left(Y(A^d)\right)$$

and *population intervention effect* is $E(Y(A^d)) - E(Y)$

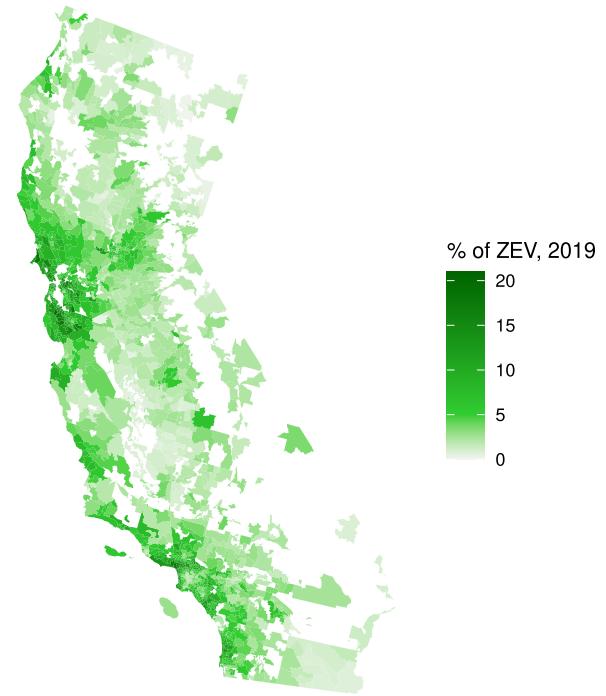
- “Average Y caused by shifting each A_i by d ”
- Causal, nonparametric analogue of a linear regression coefficient

Problem: want MTP effects in
spatial data...

Example: Electric Vehicles

What is the impact of zero-emissions vehicles (ZEV) on NO_2 air pollution in California?

- Continuous treatment (proportion of ZEVs)
- No real-world intervention can “set everyone’s proportion of ZEVs to $A = a$ ”
- But we can consider MTP effects, like $E(Y(A + 1))$ or $E(Y(1.01 \cdot A))$



Research Question

How to **identify** and **estimate** causal effects of MTPs in spatial data?

Must be...

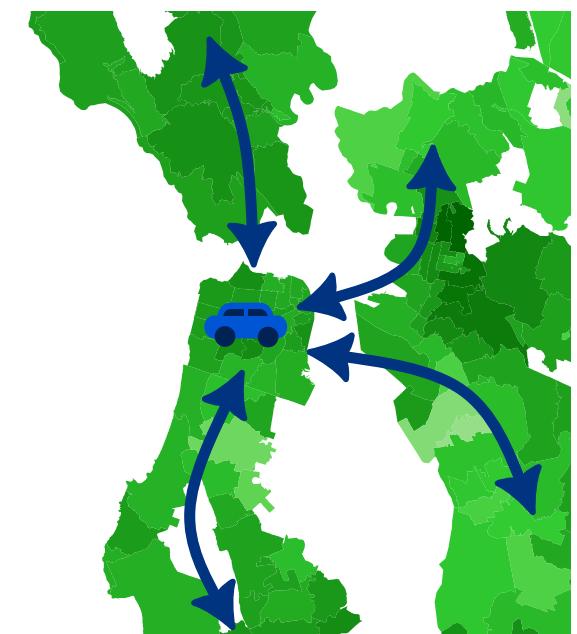
- Policy-relevant (*intervention on population*)
- Flexibly estimable (*no parametric nuisance models*)
- Efficient (*approach lowest possible variance*)

Interference

Hudgens and Halloran (2008): *interference* occurs when potential outcome of unit i depends on exposures of other units

$$Y_i(a_i, a_j) \neq Y_i(a_i, a'_j) \text{ if } a_j \neq a'_j$$

- Common in spatial data
- Causal identification fails: SUTVA/consistency violated
- Correlated data → challenging estimation

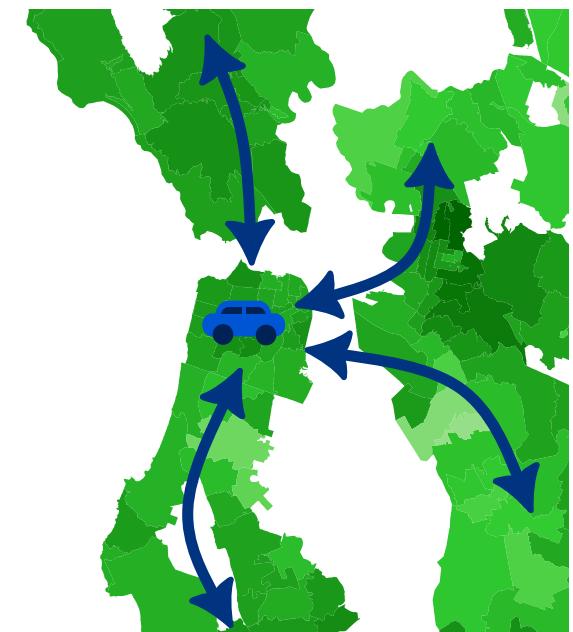


Interference

Hudgens and Halloran (2008): interference occurs when potential outcome of unit i depends on exposures of other units

$$Y_i(a_i, a_j) \neq Y_i(a_i, a'_j) \text{ if } a_j \neq a'_j$$

Network interference: Potential outcomes only depend on neighbors in adjacency matrix \mathbf{F} (van der Laan 2014).



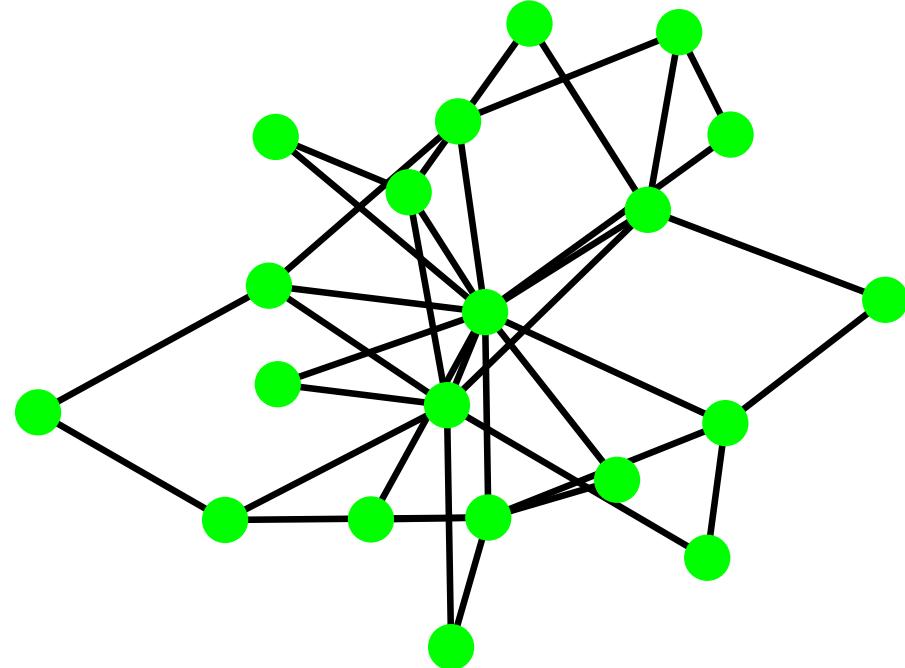
The Induced MTP

New Data Structure

1. **Observed data**: A tuple of n -vectors, O_1, \dots, O_n , where

$$\mathbf{O} = (\mathbf{L}, \mathbf{A}, \mathbf{Y})$$

2. **Network \mathbf{F}** : An adjacency matrix of each unit's neighbors (known).



Repairing identification under interference

Under interference, consider the following structural equation:

$$Y_i = f\left(s_A(A_j : j \in F_i), s_L(L_j : j \in \mathbf{F}_i)\right)$$

- s : “summary” of neighbors’ exposures or **exposure mapping**
- For short, denote vector of $s_A(A_j : j \in \mathbf{F}_i)$ as $s(A)$
- Example: $s(A)_i = \sum_{j \in \mathcal{F}_i} A_j$

Treating $s(A)$ as exposure instead of A restores SUTVA ([Aronow and Samii 2017](#)); just use $Y(s(a))$ instead of $Y(a)$!

The induced MTP

What happens if we apply the MTP *and then summarize*?

$$A \xrightarrow{d} A^d \xrightarrow{s} A^{s \circ d}$$

Call the function $s \circ d$ the **induced MTP**.

Population intervention effect of an induced MTP:

$$\Psi_n(\mathbf{P}) = \mathbb{E}_{\mathbf{P}} \left[\frac{1}{n} \sum_{i=1}^n Y_i (s(d(\mathbf{A}, \mathbf{L}; \delta))_i) \right] - \mathbb{E}_{\mathbf{P}} [Y]$$

- *data-adaptive*, only observe one network

Identification

Network analogues of classical assumptions (weaker)

A0 (SCM). Data are generated from a structural causal model:

$$L_i = f_L(\varepsilon_{L_i}); A_i = f_A(L_i^s, \varepsilon_{A_i}); Y_i = f_Y(A_i^s, L_i^s, \varepsilon_{Y_i}) .$$

with error vectors independent of each other with identically distributed entries and $\varepsilon_i \perp\!\!\!\perp \varepsilon_j$ provided i, j not neighbors in \mathbf{F}

A1 (Summary positivity). If $s(a), s(l) \in \text{supp}(A^s, L^s)$ then $s(a^d), s(l) \in \text{supp}(A^s, L^s)$

A2 (No unmeasured confounding). $Y(A^s) \perp\!\!\!\perp A^s \mid L$

Extra necessary conditions on \mathbf{d} and \mathbf{s}

A3 (Piecewise smooth invertibility). The MTP \mathbf{d} has an differentiable inverse on a countable partition of $\text{supp}(\mathbf{A})$.

A4 (Summary coarea). \mathbf{s} has Jacobian $\mathbf{J}\mathbf{s}$ satisfying

$$\sqrt{\det \mathbf{J}\mathbf{s}(\mathbf{a})\mathbf{J}\mathbf{s}(\mathbf{a})^\top} > 0$$

- From measure-theoretic calculus; allows use of $\mathbf{A}^{\mathbf{s}}$ in place of \mathbf{A}

Identification Result (Section S2)

Statistical estimand factorizes in terms of \mathbf{A}^s :

$$\psi_n = \frac{1}{n} \sum_{i=1}^n \mathbb{E}_{\mathbb{P}}(\mathbf{m}(A_i^s, L_i^s) \cdot \mathbf{r}(A_i^s, A_i^{s \circ d}, L_i^s) \cdot \mathbf{w}(\mathbf{A}, \mathbf{L})_i)$$

with nuisance parameters \mathbf{m} , \mathbf{r} and weights \mathbf{w} :

$$m(a^s, l^s) = \mathbb{E}_Y(Y \mid A_i^s = a^s, L_i^s = l^s)$$

$$r(a^s, a^{s \circ d^{-1}}, l^s) = \frac{p(a^{s \circ d^{-1}} \mid l^s)}{p(a^s \mid l^s)}$$

$$w(\mathbf{a}, \mathbf{l}) = \sqrt{\frac{\det J(s \circ d^{-1})(\mathbf{a}) J(s \circ d^{-1})(\mathbf{a})^\top}{\det J s(\mathbf{a}) J s(\mathbf{a})^\top}}$$

Advantages of MTP in network

- **Population-level** estimand; intervention always compatible with network
- Fewer **positivity issues** from enforcing static intervention on summaries themselves
- Unknown parts of estimand only in terms of A^s and L^s

Estimation

Desiderata for estimators

- *semiparametric efficiency*
 - Best possible variance among the class of regular asymptotically linear (RAL) estimators
- *rate double-robustness*
 - structure allows flexible regression or machine learning (converge slower than $o_{\mathbb{P}}(n^{-1/2})$, parametric rate) for nuisance estimation

Efficient, Doubly-Robust, Nonparametric Estimation

Construct an efficient estimator solving estimating equation with **efficient influence function** ϕ

$$\frac{1}{n} \sum_{i=1}^n \phi(O_i; \hat{\eta})$$

where $\hat{\eta}$ is a set of nuisance estimators whose *product* converge at $o_{\mathbb{P}}(n^{-1/2})$ (i.e. only need $o_{\mathbb{P}}(n^{-1/4})$, typical in statistical learning)

- One-step correction (**Bickel et al. 1993; Pfanzagl and Wefelmeyer 1985**)
(e.g. AIPW)
- TMLE (**van der Laan and Rose 2011; van der Laan and Rubin 2006**)

Efficient, Doubly-Robust, Nonparametric Estimation

The efficient influence function of ψ_n , a special case of the EIF for the counterfactual mean of a stochastic intervention ([Ogburn et al. 2022](#)), is

$$\begin{aligned}\bar{\phi}(O_i) = & \frac{1}{n} \sum_{i=1}^n w(\mathbf{A}, \mathbf{L})_i \cdot r(A_i^s, L_{s,i})(Y_i - m(A_i^s, L_i^s)) \\ & + \mathbb{E}(m(A_i^{sod}, L_i^s; \delta), L_i^s) \mid \mathbf{L} = 1) - \psi_n ,\end{aligned}$$

Efficient, Doubly-Robust, Nonparametric Estimation

Ogburn et al. (2022)'s CLT: If $\hat{\psi}_n$ is constructed to solve $\bar{\phi} \approx \mathbf{0}$ and $K_{\max}^2/n \rightarrow 0$, then, under mild regularity conditions,

$$\sqrt{C_n}(\hat{\psi}_n - \psi_n) \rightarrow \mathbf{N}(0, \sigma^2) ,$$

where K_{\max} is the network's maximum degree.

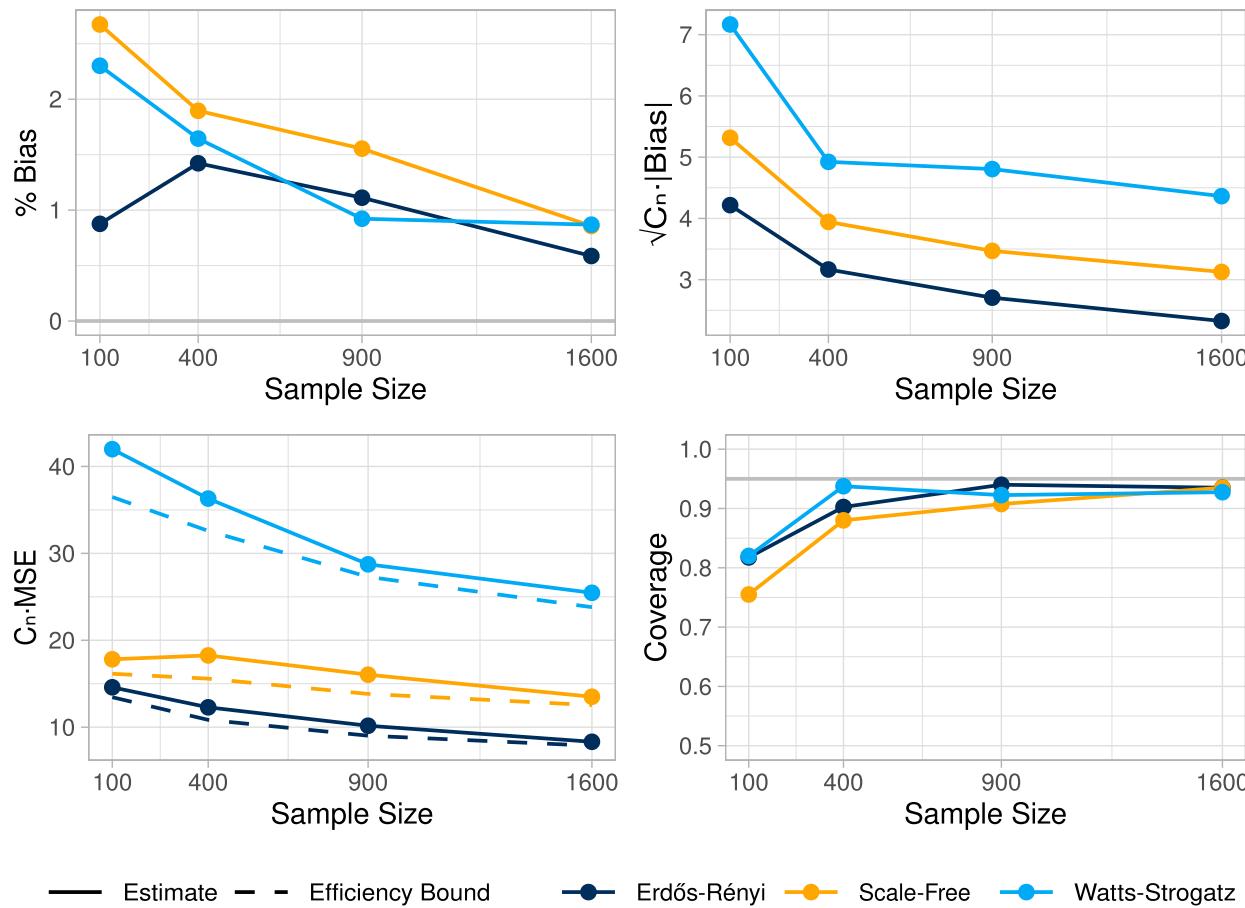
The estimator $\hat{\psi}_n$ is asymptotically normal, but the rate depends on a factor $n/K_{\max}^2 < C_n < n$ (automatically contained within $\hat{\sigma}^2$)

Estimation Framework

1. Fit estimators $\hat{\mathbf{m}}$ and $\hat{\mathbf{r}}$ of nuisance parameters \mathbf{m} and \mathbf{r} via cross-fitting¹ and super (ensemble machine) learning ([Davies and van der Laan 2016](#); [van der Laan et al. 2007](#)).
2. Construct one-step or “network-TMLE” estimators ([Zivich et al. 2022](#)) from an estimated EIF based on $\hat{\mathbf{m}}$ and $\mathbf{w} \cdot \hat{\mathbf{r}}$ (weighted density ratio)
3. Compute standard error and construct Wald-style confidence intervals based on empirical variance of the estimated EIF².

Empirical results

Asymptotic properties of Network-TMLE



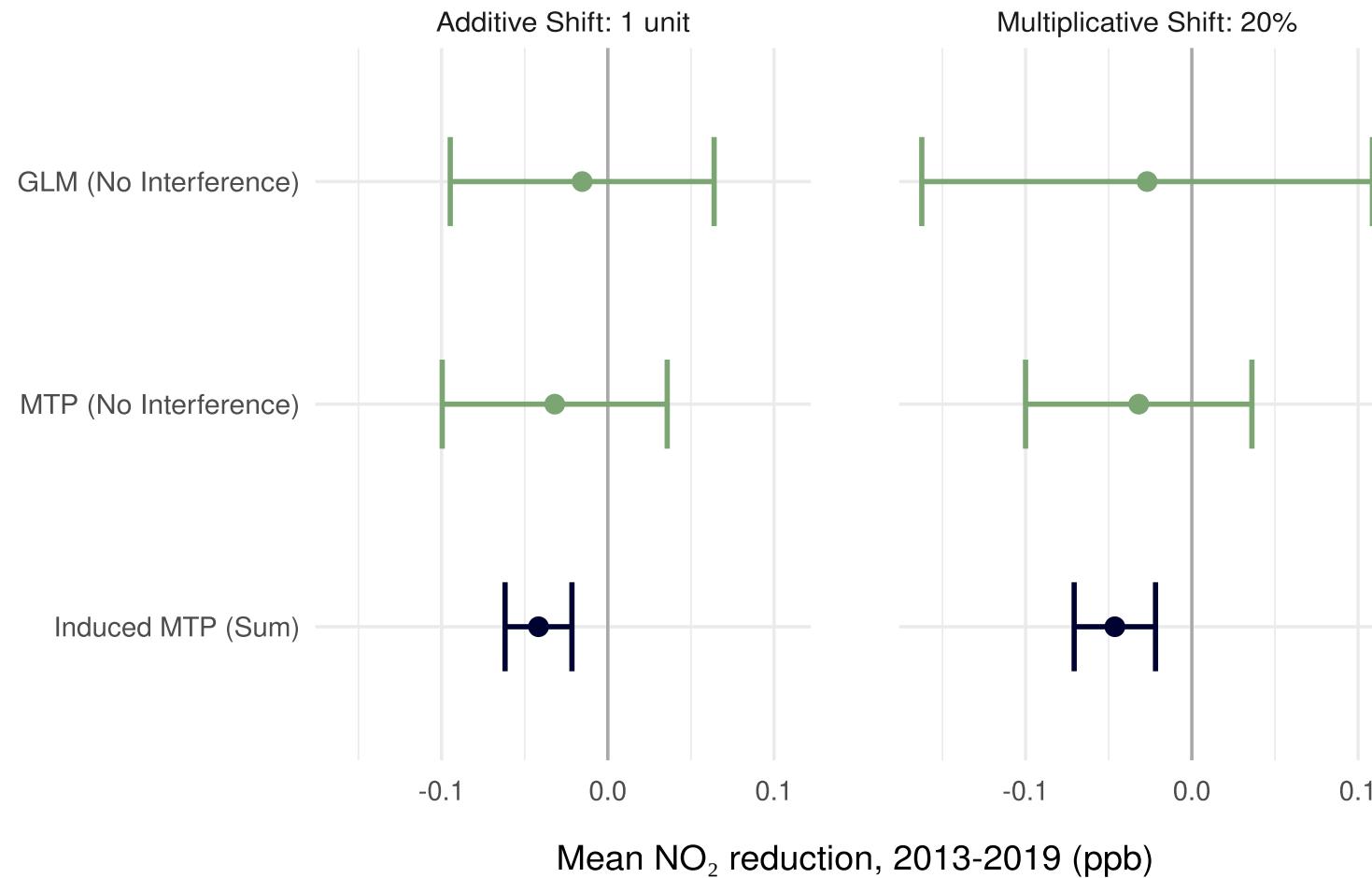
Versus competing methods on semisynthetic data

- Simulate \mathbf{A} and \mathbf{Y} as linear models from 16 socioeconomic and land-use ZIP-code level covariates from the ZEV-NO₂ California dataset.
- *How poor would estimates be if only mistake were ignoring interference?*

Method	Learner	% Bias	Variance	Coverage
Network-TMLE	Correct GLM	0.11	1.56	96.2%
Network-TMLE	Super Learner	1.03	1.56	94.0%
IID-TMLE	Correct GLM	20.42	2.11	54.8%
Linear Regression	–	20.62	2.12	55.0%

Data Analysis

Effect of electric vehicles on NO_2 in California



- GLM (ignores interference): **ZEVs reduce NO_2 by 0.015 ppb**, totaling ~2.5% of average change in NO_2
- Induced MTP: **ZEVs reduce NO_2 by 0.042 ppb**, totaling ~7% of average change in NO_2

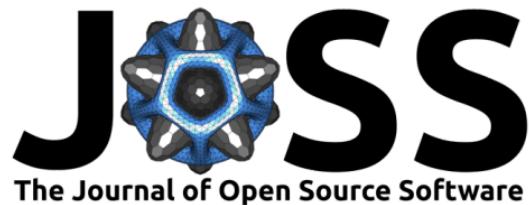
Further Work

Further work

Challenges remain:

- Difficult to estimate conditional density ratio nuisance r
 - May benefit from undersmoothing or “Riesz learning”
- If summaries s unknown, can we learn them automatically?
- Same theory of the Longitudinal MTP ([Díaz et al. 2021](#)) should extend when reduced; useful for time-varying setting

Simulations powered by CausalTables.jl



CausalTables.jl: Simulating and storing data for statistical causal inference in Julia

Salvador V. Balkus ¹¶ and Nima S. Hejazi ¹

¹ Department of Biostatistics, Harvard T.H. Chan School of Public Health ¶ Corresponding author

DOI: [10.21105/joss.07580](https://doi.org/10.21105/joss.07580)

Software

- [Review](#) ↗
- [Repository](#) ↗
- [Archive](#) ↗

Editor: [Oskar Laverty](#) ↗

Reviewers:

Summary

Estimating the strength of causal relationships between treatment and response variables is an important problem across many scientific disciplines. CausalTables.jl is a package that supports causal inference in Julia by providing two important functionalities. First, it implements the CausalTable, bundling tabular data with a type of directed acyclic graph (DAG) encoding features' causes. Users can intervene on treatments and identify causal-relevant variables like confounders automatically. Second, the package's StructuralCausalModel interface simplifies

Thank you! Questions?

Funded by NIEHS T32 ES007142
and NSF DGE 2140743

References

Aronow, P. M., and Samii, C. (2017), "Estimating average causal effects under general interference, with application to a social network experiment," *The Annals of Applied Statistics*, Institute of Mathematical Statistics, 11. <https://doi.org/10.1214/16-aoas1005>.

Bickel, P. J., Klaassen, C. A. J., Ritov, Y., and Wellner, J. A. (1993), *Efficient and adaptive estimation for semiparametric models*, Springer.

Davies, M. M., and van der Laan, M. J. (2016), "Optimal spatial prediction using ensemble machine learning," *The International Journal of Biostatistics*, Walter de Gruyter GmbH, 12, 179–201. <https://doi.org/10.1515/ijb-2014-0060>.

Díaz, I., Williams, N., Hoffman, K. L., and Schenck, E. J. (2021), "Nonparametric causal effects based on longitudinal modified treatment policies," *Journal of the American Statistical Association*, Informa UK Limited, 118, 846–857. <https://doi.org/10.1080/01621459.2021.1955691>.

Haneuse, S., and Rotnitzky, A. (2013), "Estimation of the effect of interventions that modify the received treatment," *Statistics in Medicine*, Wiley, 32, 5260–5277. <https://doi.org/10.1002/sim.5907>.

Hudgens, M. G., and Halloran, M. E. (2008), "Toward causal inference with interference," *Journal of the American Statistical Association*, Informa UK Limited, 103, 832–842. <https://doi.org/10.1198/016214508000000292>.

Ogburn, E. L., Sofrygin, O., Díaz, I., and Laan, M. J. van der (2022), "Causal inference for social network data," *Journal of the American Statistical Association*, Informa UK Limited, 119, 597–611. <https://doi.org/10.1080/01621459.2022.2131557>.

Pfanzagl, J., and Wefelmeyer, W. (1985), "Contributions to a general asymptotic statistical theory," *Statistics & Risk Modeling*, 3, 379–388.

van der Laan, M. J. (2014), "Causal inference for a population of causally connected units," *Journal of Causal Inference*, Walter de Gruyter GmbH, 2, 13–74. <https://doi.org/10.1515/jci-2013-0002>.

van der Laan, M. J., Polley, E. C., and Hubbard, A. E. (2007), "Super learner," *Statistical Applications in Genetics and Molecular Biology*, De Gruyter, 6. <https://doi.org/10.2202/1544-6115.1309>.

van der Laan, M. J., and Rose, S. (2011), *Targeted learning: Causal inference for observational and experimental data*, Springer. <https://doi.org/10.1007/978-1-4419-9782-1>.

van der Laan, M. J., and Rubin, D. (2006), "Targeted maximum likelihood learning," *The International Journal of Biostatistics*, De Gruyter, 2. <https://doi.org/10.2202/1557-4679.1043>.

Zivich, P. N., Hudgens, M. G., Brookhart, M. A., Moody, J., Weber, D. J., and Aiello, A. E. (2022), "Targeted maximum likelihood estimation of causal effects with interference: A simulation study," *Statistics in Medicine*, Wiley, 41, 4554–4577. <https://doi.org/10.1002/sim.9525>.

Appendix A: Variance estimation

EIF was given in the form $\frac{1}{n} \sum_{i=1}^n \phi_P(O_i)$, but must be centered at the means of units with the same number of neighbors $N(|\mathbf{F}_i|)$:

$$\varphi_i = \phi_{\hat{P}_n(O_j)}(O_i) - \frac{1}{|N(|\mathbf{F}_i|)|} \sum_{j \in N(|\mathbf{F}_i|)} \phi_{\hat{P}_n(O_j)}$$

Then, $\hat{\sigma}^2 = \frac{1}{n^2} \sum_{i,j} \mathbf{F}_{ij} \varphi_i \varphi_j \xrightarrow{P} \sigma^2$

Appendix B: Cross-fitting in Dependent Data

Main idea: cross-fitting eliminates the “empirical process term”

$$\mathbb{P}_n \phi_{\hat{\eta}} = \underbrace{\mathbb{P}_n \phi_{\eta_0}}_{\text{CLT}} + \underbrace{\mathbb{P}(\phi_{\hat{\eta}} - \phi_{\eta_0})}_{\text{Nuisance product}} + \underbrace{(\mathbb{P}_n - \mathbb{P})(\phi_{\hat{\eta}} - \phi_{\eta_0})}_{\text{Empirical process}}$$

- Empirical mean unbiased under cross-fitting, even in correlated units
- $\text{Var}(\phi_{\hat{\eta}} - \phi_{\eta_0}) = o(1/C_n)$ by Bienayme’s identity
 - Network assumes $K_{\max}^2/n \leq C_n$
 - There are at most K_{\max}^2 correlated units
- Therefore, $(\mathbb{P}_n - \mathbb{P})(\phi_{\hat{\eta}} - \phi_{\eta_0}) = o_P(1/C_n)$

Appendix C: DGP for simulation study

Draw 400 iterations, estimate effect of MTP based on

$$\mathbf{L}_1 \sim \text{Beta}(3, 2); \mathbf{L}_2 \sim \text{Poisson}(100); \mathbf{L}_3 \sim \text{Gamma}(2, 4); \mathbf{L}_4 \sim \text{Bernoulli}(0.6)$$

$$m_L = \left(1 + L_4 \right) \cdot \left(-2(\mathbb{I}(L_1 > 0.3) + \mathbb{I}(L_2 > 90) + \mathbb{I}(L_3 > 5)) - (\mathbb{I}(L_1 > 0.5) + \mathbb{I}(L_2 > 100) + \mathbb{I}(L_3 > 10)) + 2(\mathbb{I}(L_1 > 0.7) + \mathbb{I}(L_2 > 110) + \mathbb{I}(L_3 > 15)) \right)$$

$$\mathbf{A} \sim \text{Normal}(m_L - 5, 1.0) \text{ and } \mathbf{A}^s = \left[\sum_{j \in F_i} A_i \right]_{i=1}^n$$

$$m_A = -2\mathbb{I}(A > -2) - \mathbb{I}(A > 1) + 3\mathbb{I}(A > 3); m_{A_s} = 3\mathbb{I}(A_s > 0) + \mathbb{I}(A_s > 6) + \mathbb{I}(A_s > 12)$$

$$\mathbf{Y} \sim \text{TruncNormal}(m_L \cdot (1 + 0.2m_A + m_{A_s}) + 5, 2.0),$$

Appendix D: Effect of ZEV on NO_2

