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Scientific Motivation: Environmental Health

Example domains

Air pollution

Wildfires

Extreme heat

Common issue: continous treatments
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Standard causal data set-up

Observed data: A tuple of -vectors, , wheren O1, … ,On

O = (L, A, Y) ∼ P

: measured baseline covariates

: continuous exposure

: outcome of interest

L

A

Y

Question: how much would  have changed under different value of ?Y A
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Causal inference with continuous 

Let  denote “potential outcome”: value of  had we set .

A

Y (a) Y A = a

Typically seek counterfactual mean 

→ average effect on  of setting 

E(Y (a))

Y A = a

If  is continuous…

→ Can’t observe all possible : hard to estimate dose-response

nonparametrically

→ “Setting all ” often doesn’t make sense

→ Instead, consider modifying observed treatment…

A

A

A = a
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Modified Treatment Policies

A user-specified function  that maps the observed exposure  to

an post-intervention value ( ).

d(A,L; δ) A

Ad Haneuse and Rotnitzky 2013

Additive: d(A,L; δ) = A + δ

Multiplicative: d(A,L; δ) = δ ⋅ A

Piecewise Additive:

d(A,L; δ) = {
A + δ ⋅ L A ∈ A(L)
A otherwise
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Causal Effect of a Modified Treatment Policy

Counterfactual mean is now

and population intervention effect is 

EP(Y (d(A,L; δ))) = EP(Y (Ad))

E(Y (Ad)) − E(Y )

“Average  caused by shifting each  by ”

Causal, nonparametric analogue of a linear regression coefficient

Y Ai d
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Problem: want MTP effects in
spatial data…
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Example: Electric Vehicles

What is the impact of zero-emissions

vehicles (ZEV) on NO2 air pollution in

California?

% of ZEV, 2019

0

5

10

15

20Continuous treatment (proportion of

ZEVs)

No real-world intervention can “set

everyone’s proportion of ZEVs to ”A = a

But we can consider MTP effects, like

 or E(Y (A + 1)) E(Y (1.01 ⋅ A))
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Research Question

How to identify and estimate causal effects of MTPs in spatial data?

Must be…

Policy-relevant (intervention on population)

Flexibly estimable (no parametric nuisance models)

Efficient (approach lowest possible variance)
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Interference

Hudgens and Halloran ( ): interference occurs when potential outcome

of unit  depends on exposures of other units

2008

i

Yi(ai, aj) ≠ Yi(ai, a
′
j) if aj ≠ a′

j

Common in spatial data

Causal identification fails: SUTVA/consistency

violated

Correlated data → challenging estimation
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Interference

Hudgens and Halloran ( ): interference occurs when potential outcome

of unit  depends on exposures of other units

Network interference: Potential outcomes only

depend on neighbors in adjacency matrix (

).

2008

i

Yi(ai, aj) ≠ Yi(ai, a
′
j) if aj ≠ a′

j

F van der

Laan 2014
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The Induced MTP

12

Space-Time Causality Reading Group



New Data Structure

1. Observed data: A tuple of -

vectors, , where

2. Network : An adjacency matrix

of each unit’s neighbors (known).

n
O1, … ,On

O = (L, A, Y)

F
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Repairing identification under interference

Under interference, consider the following structural equation:

Yi = f(sA(Aj : j ∈ Fi), sL(Lj : j ∈ Fi))

 : “summary” of neighbors’ exposures or exposure mapping

For short, denote vector of  as 

Example: 

s

sA(Aj : j ∈ Fi) s(A)

s(A)i = ∑j∈Fi
Aj

Treating  as exposure instead of  restores SUTVA (

); just use  instead of !

s(A) A Aronow and

Samii 2017 Y (s(a)) Y (a)
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The induced MTP

What happens if we apply the MTP and then summarize?

A
d
⟶ Ad s

⟶ As∘d

Call the function  the induced MTP.s ∘ d

Population intervention effect of an induced MTP:

data-adaptive, only observe one network

Ψn(P) = EP[
1

n

n

∑
i=1

Yi(s(d(A, L; δ))i)]− EP[Y ]
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Identification
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Network analogues of classical assumptions (weaker)

A0 (SCM). Data are generated from a structural causal model:

with error vectors independent of each other with identically distributed

entries and  provided  not neighbors in 

Li = fL(εLi
);Ai = fA(Ls

i , εAi
);Yi = fY (As

i ,L
s
i , εYi

) .

εi⊥⊥εj i, j F

A1 (Summary positivity). If  then

A2 (No unmeasured confounding). 

s(a), s(l) ∈ supp(As,Ls)
s(ad), s(l) ∈ supp(As,Ls)

Y (As)⊥⊥As ∣ L
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Extra necessary conditions on  and 

A3 (Piecewise smooth invertibility). The MTP  has an differentiable inverse

on a countable partition of .

A4 (Summary coarea).  has Jacobian  satisfying

From measure-theoretic calculus; allows use of  in place of 

d s

d
supp(A)

s Js

√det Js(a)Js(a)⊤ > 0

As
A
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Identification Result (Section S2)

Statistical estimand factorizes in terms of :

with nuisance parameters ,  and weights :

As

ψn =
1

n

n

∑
i=1

EP(m(As

i
, L

s

i
) ⋅ r(As

i ,A
s∘d
i ,Ls

i ) ⋅ w(A, L)i)

m r w

m(a
s, l

s) = EY (Y ∣ A
s

i = a
s, L

s

i = l
s)

r(as, as∘d−1

, ls) =
p(as∘d−1

∣ ls)

p(as ∣ ls)

w(a, l) = √
det J(s ∘ d−1)(a)J(s ∘ d−1)(a)⊤

det Js(a)Js(a)⊤
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Advantages of MTP in network

Population-level estimand; intervention always compatible with network

Fewer positivity issues from enforcing static intervention on summaries

themselves

Unknown parts of estimand only in terms of  and As Ls
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Estimation
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Desiderata for estimators

semiparametric efficiency

→ Best possible variance among the class of regular asymptotically

linear (RAL) estimators

rate double-robustness

→ structure allows flexible regression or machine learning (converge

slower than , parametric rate) for nuisance estimationoP(n−1/2)
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Efficient, Doubly-Robust, Nonparametric Estimation

Construct an efficient estimator solving estimating equation with efficient
influence function

where  is a set of nuisance estimators whose product converge at

 (i.e. only need , typical in statistical learning)

One-step correction ( ; )

(e.g. AIPW)

TMLE ( ; )

ϕ

1

n

n

∑
i=1

ϕ(Oi; η̂)

η̂

oP(n−1/2) oP(n−1/4)

Bickel et al. 1993 Pfanzagl and Wefelmeyer 1985

van der Laan and Rose 2011 van der Laan and Rubin 2006
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Efficient, Doubly-Robust, Nonparametric Estimation

The efficient influence function of , a special case of the EIF for the

counterfactual mean of a stochastic intervention ( ), is

ψn

Ogburn et al. 2022

ϕ̄(Oi) =
1

n

n

∑
i=1

w(A, L)i ⋅ r(As
i ,Ls,i)(Yi − m(As

i ,L
s
i ))

+ E(m(As∘d
i ,Ls

i ; δ),Ls
i ) ∣ L = l) − ψn ,
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Efficient, Doubly-Robust, Nonparametric Estimation

Ogburn et al. ( )’s CLT: If  is constructed to solve  and

, then, under mild regularity conditions,

where  is the network’s maximum degree.

The estimator  is asymptotically normal, but the rate depends on a factor

 (automatically contained within )

2022 ψ̂n ϕ̄ ≈ 0
K 2

max/n → 0

√Cn(ψ̂n − ψn) → N(0,σ2) ,

Kmax

ψ̂n

n/K 2
max < Cn < n σ̂2
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Estimation Framework

1. Fit estimators  and  of nuisance parameters  and  via cross-

fitting1 and super (ensemble machine) learning (

; ).

2. Construct one-step or “network-TMLE” estimators ( )

from an estimated EIF based on  and  (weighted density ratio)

3. Compute standard error and construct Wald-style confidence intervals

based on empirical variance of the estimated EIF2.

m̂ r̂ m r

Davies and van der

Laan 2016 van der Laan et al. 2007

Zivich et al. 2022

m̂ w ⋅ r̂
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Empirical results
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Asymptotic properties of Network-TMLE
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Versus competing methods on semisynethic data

Simulate  and  as linear models from 16 socioeconomic and land-

use ZIP-code level covariates from the ZEV-NO2 California dataset.

How poor would estimates be if only mistake were ignoring interference?

Method Learner % Bias Variance Coverage

Network-TMLE Correct GLM 0.11 1.56 96.2%

Network-TMLE Super Learner 1.03 1.56 94.0%

IID-TMLE Correct GLM 20.42 2.11 54.8%

Linear Regression — 20.62 2.12 55.0%

A Y
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Data Analysis
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Effect of electric vehicles on  in California

GLM (ignores interference): ZEVs reduce NO2 by 0.015 ppb, totaling ~2.5% of average change in NO2

Induced MTP: ZEVs reduce NO₂ by 0.042 ppb, totaling ~7% of average change in NO2

NO2
Additive Shift: 1 unit Multiplicative Shift: 20%

-0.1 0.0 0.1 -0.1 0.0 0.1

Induced MTP (Sum)

MTP (No Interference)

GLM (No Interference)

Mean NO₂ reduction, 2013-2019 (ppb)
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Further Work
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Further work

Challenges remain:

Difficult to estimate conditional density ratio nuisance 

→ May benefit from undersmoothing or “Riesz learning”

r

If summaries  unknown, can we learn them automatically?s

Same theory of the Longitudinal MTP ( ) should extend

when reduced; useful for time-varying setting

Díaz et al. 2021
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Simulations powered by CausalTables.jl
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Thank you! Questions?

Funded by NIEHS T32 ES007142

and NSF DGE 2140743
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Appendix A: Variance estimation

EIF was given in the form , but must be centered at the

means of units with the same number of neighbors :

1
n
∑n

i=1 ϕP (Oi)
N(|Fi|)

φi = ϕ
P̂n(Oj)

(Oi) −
1

|N(|Fi)|)|
∑

j∈N(|Fi|)

ϕ
P̂n(Oj)

Then, σ̂2 = 1
n2 ∑i,j Fijφiφj

P
→ σ2
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Appendix B: Cross-fitting in Dependent Data

Main idea: cross-fitting eliminates the “empirical process term”

Empirical mean unbiased under cross-fitting, even in correlated units

 by Bienayme’s identity

→ Network assumes 

→ There are at most  correlated units

Therefore, 

Pnϕη̂ = Pnϕη0

CLT

+ P(ϕη̂ − ϕη0
)

Nuisance product

+ (Pn − P)(ϕη̂ − ϕη0
)

Empirical process

  

Var(ϕη̂ − ϕη0
) = o(1/Cn)

K 2
max/n ≤ Cn

K 2
max

(Pn − P)(ϕη̂ − ϕη0
) = oP (1/Cn)
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Appendix C: DGP for simulation study
Draw 400 iterations, estimate effect of MTP based on

L1 ∼ Beta(3, 2); L2 ∼ Poisson(100); L3 ∼ Gamma(2, 4); L4 ∼ Bernoulli(0.6)

mL = (1 + L4) ⋅ (− 2(I(L1 > 0.3) + I(L2 > 90) + I(L3 > 5)) − (I(L1 > 0.5)+

I(L2 > 100) + I(L3 > 10)) + 2(I(L1 > 0.7) + I(L2 > 110) + I(L3 > 15)))

A ∼ Normal(mL − 5, 1.0) and A
s = [∑

j∈Fi

Ai]
n

i=1

mA = −2I(A > −2) − I(A > 1) + 3I(A > 3);mAs = 3I(As > 0) + I(As > 6) + I(As > 12)

Y ∼ TruncNormal(mL ⋅ (1 + 0.2mA + mAs
) + 5, 2.0) ,
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Appendix D: Effect of ZEV on 

Additive Shift Multiplicative Shift
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