Multi-Level Biosensor-based Epidemic Forecasting in Small Areas

Salvador Balkus, Dr. Hua Fang University of Massachusetts Dartmouth

Current Epidemic Forecasting

SEIR: Standard model, tracks change in population of different "compartments" in the region

Implement as Linear Dynamical System:

$$x_{t+1} = A_t x_t$$

Current Epidemic Forecasting

SEIR: Standard model, tracks change in population of different "compartments" in the region

Implement as Linear Dynamical System:

Challenges using SEIR:

- Assume closed system
- Rely on potentially delayed tests
- Suboptimal for small areas (universities, towns, etc.)

How can we overcome these challenges?

SEIR Model, graphically

$$x_{t+1} = A_t x_t$$

The m-ADBio Model

Improves on SEIR by incorporating novel data sources into compartmental model

The m-ADBio Model, graphically

Parameters of m-ADBio

Var.	Name	Description
w	Population vector	$w_k :=$ the population of geography k
r	Effective reproductive rate vector	$r_k :=$ the effective reproductive rate of geography k
p_E	Latent period	Mean days until infectious once exposed
p_I	Recovery period	Mean days to recover once infectious
C	Commuting matrix	$C_{i,j} := $ population commuting from i to j
X_0	Initial value matrix	A 4 x m matrix, the column $X_i :=$ Number of Susceptible, Exposed, Infectious, and Recovered individuals respectively.

Table 1: Constant variables in the m-ADBio model

m-ADBio as a Linear Dynamical System

$$A_{t} = \begin{bmatrix} -\alpha_{i} & 0 & 0 & 0 \\ \alpha_{i} & \frac{-1}{p_{E}} & 0 & 0 \\ 0 & \frac{1}{p_{E}} & \frac{-1}{p_{I}} & 0 \\ 0 & \frac{1}{p_{E}} & \frac{-1}{p_{I}} & 0 \\ 0 & 0 & \frac{1}{p_{I}} & 1 \end{bmatrix}$$

Transition Matrix

$$M_{i,j} = \frac{C_{i,j}I_ir_i}{p_Iw_iw_j}$$

Mean Infection Risk

$$\alpha = \frac{1}{2} \left(M + M^T \right) \begin{bmatrix} 1 \\ \dots \\ 1 \end{bmatrix}$$

Calculating the alpha vector

Results

Forecast of COVID-19 cases at University of Massachusetts Dartmouth during Spring Semester: *m-ADBio* compared to *SEIR*

Results

Forecast of COVID-19 cases at University of Massachusetts Dartmouth during Spring Semester: *m*-*ADBio* using sensors of varying error rates

Using the model yourself: The **madbio** R package

- R package available on GitHub
- Visualizes cases over time
- Can compare different...
 - Models
 - Sensor-based starting values
 - Reproductive rates

Future Work

• Expand R package to allow additional model parameters

- Test model on geographies beyond University of Massachusetts Dartmouth
- Improve estimation of effective reproductive rate *R_t* for small regions

Thank you for listening!