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Abstract

As thousands of satellites are launched each year,
tracking the location of objects in space for colli-
sion avoidance has become critical. In this work,
we develop a new multi-hypothesis tracking algo-
rithm with a novel χ2-based track scoring metric
for tracking objects in a cluttered environment.
We find that our method can overcome several
challenging scenarios in multi-object tracking.

Introduction

Figure 1:GPS satellite (courtesy: The Aerospace Corporation)

• Thousands of satellites are launched each year,
including projects like Starlink internet service.

• To prevent destructive collisions between
satellites and space objects, the locations of all
objects in Earth’s orbit must be tracked.

• The Kalman filter combines measurements from
radar and telescopes with knowledge about the
object’s movement (orbital dynamics).

• However, tracking multiple objects is challenging,
because new objects can appear or disappear, and
some measurements may be false alarms.

• Multi-hypothesis tracking (MHT) is a
deferred decision approach to tracking multiple
objects in which multiple observation-to-target
(O2T) matching possibilities are maintained.

• Since MHT techniques are not well-developed, we
evaluate a new method via simulation study.

MHT Algorithm

1 Scan & gate measurements. Eliminate some O2T
matchings based on distance, for efficiency.
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2 Track creation. Create new tracks for O2T and
new object possibilities.
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3 Chi-squared track scoring. Find the probability
that the measurements seen were generated
supposing that predicted trajectory is the truth.

χ2 = (n − 1)s2

σ2

s2 = observed variance in measurements
σ2 = expected variance in measurements

4 Hypothesis determination. Form a graph where
the nodes are tracks and edges denote
incompatibility (sharing measurements). Use the
maximum weight independent set algorithm to
find best hypothesis.
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5 N -scan pruning. Delete any track that doesn’t
originate from the same track as a best
hypothesis track N time steps back.
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6 Filter update. Use the Kalman filter to generate
predictions for the next time step.

Results

We ran several difficult tracking scenarios with the
following simulation parameters: process noise, mea-
surement noise, proportion of measurements that
are missed, and average number of false alarms.

Intersecting Paths: When the pruning param-
eter N = 0, the algorithm tends to confuse objects
when they intersect.

Figure 2:0-scan pruning (single-hypothesis tracking)

However, when N = 5, performance is improved.

Figure 3:Intersecting paths with N = 5

Parallel Paths: When looking at the best hy-
pothesis, the algorithm does a fair job of keeping
the objects separate, even with false alarms.

Figure 4:Parallel objects and false alarms

Discussion

In this project, we empirically tested the strengths
and weaknesses of the MHT algorithm.

Strengths:
• Resolves uncertain paths
• Performs well in divergent cases
• Is able to detect object births relatively well
Weaknesses:
• Difficult to score scenarios with missed

measurements (especially in parallel)
• Excessive track creation in object birth/death
• Computational issues
Future Research:
• Score hypotheses rather than individual tracks
• Develop new hypothesis computation algorithm

to leverage probabilities
• Add additional error metrics; rates for false

alarms, object swaps, etc
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